Hermitian Young Operators

نویسندگان

  • Stefan Keppeler
  • Malin Sjödahl
چکیده

Starting from conventional Young operators we construct Hermitian operators which project orthogonally onto irreducible representations of the (special) unitary group.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermitian solutions to the system of operator equations T_iX=U_i.

In this article we consider the system of operator equations T_iX=U_i for i=1,2,...,n and give necessary and suffcient conditions for the existence of common Hermitian solutions to this system of operator equations for arbitrary operators without the closedness condition. Also we study the Moore-penrose inverse of a ncross 1 block operator matrix and. then gi...

متن کامل

Classes of non-Hermitian operators with real eigenvalues

Classes of non-Hermitian operators that have only real eigenvalues are presented. Such operators appear in quantum mechanics and are expressed in terms of the generators of the Weyl-Heisenberg algebra. For each non-Hermitian operator A, a Hermitian involutive operator Ĵ such that A is Ĵ-Hermitian, that is, ĴA = AĴ , is found. Moreover, we construct a positive definite Hermitian Q such that A is...

متن کامل

Ela Classes of Non-hermitian Operators with Real Eigenvalues

Classes of non-Hermitian operators that have only real eigenvalues are presented. Such operators appear in quantum mechanics and are expressed in terms of the generators of the Weyl-Heisenberg algebra. For each non-Hermitian operator A, a Hermitian involutive operator Ĵ such that A is Ĵ-Hermitian, that is, ĴA = AĴ , is found. Moreover, we construct a positive definite Hermitian Q such that A is...

متن کامل

Weyl’s Theorem for Operator Matrices

Weyl’s theorem for an operator says that the complement in the spectrum of the Weyl spectrum coincides with the isolated points of the spectrum which are eigenvalues of finite multiplicity. H. Weyl ([22]) discovered that this property holds for hermitian operators and it has been extended from hermitian operators to hyponormal operators and to Toeplitz operators by L. Coburn ([5]), and to sever...

متن کامل

Metric Operators for Quasi-Hermitian Hamiltonians and Symmetries of Equivalent Hermitian Hamiltonians

We give a simple proof of the fact that every diagonalizable operator that has a real spectrum is quasi-Hermitian and show how the metric operators associated with a quasiHermitian Hamiltonian are related to the symmetry generators of an equivalent Hermitian Hamiltonian. PACS number: 03.65.-w

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013